Horsepower to Compress Gases
[ back to full computer program list ]
This procedure uses the Polytropic Process to determine the horsepower required to
compress gases.
Example #1 - Compression of Natural Gas for the Transmission Pipeline
1. Natural Gas Properties
a. Temperature: 60 F
b. Barometric Pressure : 14.6960 psi
c. Nat. Gas Gage Pressure: 1250.00 psig (at compressor discharge)
d. Nat. Gas Absolute Pressure: 1264.6960 psia
e. Specific Gravity: 0.60
f. Molecular Weight: 17.3787 lbm/mole
g. Compressibility Factor Z: 1.00
h. Ratio of the Specific Heats (k = Cp/Cv): 1.29
i. HHV (Btu/lb) : 22,708.49
j. HHV (Btu/std ft3): 1040 Btu/ft3
k. Density: 3.940842 lb/ft3
2. Natural Gas Pipeline Flow
a. Mass Flow:
1,878,030.4628 lbs/hr
31,300.5077 lbs/min
b. Volume Flow at 1250 psig & 60 F:
476,555.6451 actual ft3/hour
7,942.5941 actual ft3/min
c. HHV Energy Flow: 42,647,230,264.40 Btu/hour
3. Pipeline Data
a. Pipe OD: 36.00 inches
b. Pipe ID: 34.7580 inches
c. Transverse Internal Area: 6.589265 ft 2
d. Pipe Length:
528,000 ft
100.00 miles
e. Velocity of Nat. Gas at the Compressor Discharge 1250 psig: 1205.3839 ft/min
f. Pipe Pressure Drop: 292.8855 psi
g. Pipe Pressure at the end of the Pipe Run:
957.1145 psig
971.8105 psia
h. Temperature at the end of the Pipe Run: 60 F
i. Velocity of Nat. Gas at the End of the Pipe Run: 1568.6640 ft/min
4. Compressor Data
a. Polytropic Efficiency (decimal): n = 0.85
b. Variable Speed Drive Efficiency (decimal): 0.95
COMPGAS Computer Program
1. Polytropic Efficiency (decimal): n =0.85
2. Gas Molecular Weight: 17.3787 lb mass/mole
3. Inlet Temperature: 519.67 R
4. n/n-1 = 3.7810
5. n-1/n = 0.264480
6. P disch/Pinlet: 1.301381
7. Compressibility Factor Z = 1.0
8. Inlet Mass Flow: 31,300.5077 lb/min
9. Calculated Polytropic Head Hp (ft –lbf/lbmass)
Hp(ft-lbf/lbmass) = 12,607.67
10. Calculated Gas Horsepower (HP)
Gas Horsepower = 14,068.68 HP
11. Compressor Temperature Discharge
Temperature Discharge = 97.4966 F
[ back to full computer program list ] [ back to top ]
|